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Tt is assuned that engineers using this handbook are thoroughly familiar
with the basic prineiples of strength of materials, such as ocan be found
in any standard text book on this subject. A brief summary of such
material is presented here for the sake of uniformity and to emphasize
certain principles of special importance. :

STRESS

General. This term as used herein always implies a force per unit area
and is & measure of the intensity of the force acting oz a definite plane
passing through a given point. ESee Eqs. 1:1 and 1:2, Sece 1.21). The
itress disbribution may or may not be uniform, depending on the nature

of the loeding condition. For example, tensile stresses as found from
Eq. 1:1, {8ec. 1.21) are considered to be uniferm, while the bending
stress determined from Eq. 1:3 (Sec. 1.21) refers to the stress at a
point located at.a distance "y" from the neutral axis. (bviously the
stress over the cross section of a merber subjected to bending is not
wniform. Likewise the shear siresses caused by & shearing losd are not
uniform (Eq. 1:4 gives the avarage stress).

Normal snd Shear Stresses. The stresses acting at a point in any stressed
member can be resoived into components acting on planes through ths point.

The normal and shear stresses actiag on any particular plane are the
stress components perperdicular and parallel, respectively, to the plane.
A simple conception ¢f these stresses 1is that normal stresses tend to pull
apart (or press together) adjacent particles of the material, while shear
stresses tend to cause such particles to slide on each other.

STRAIN

Axinl Strain. This term refers to the elongation, per unit langth, of a
member or portion of a member in a stressed condition. (See Eg. 1l:1l,
Sec. 1.23). The term "strain" should not be used in place of the terms
"elongation" and "deflection”.

lateral Strain. The axial strain of a member is always accompanied by a
Tateral strain of opposite sign. The ratio of the lateral strain to the
axial strain is called Poisson's ratio and is designated as . The walue
ijj, is usually between 0.25 and 0.33 for stesl and the aluminum alloys.

Shearing Strain. If a square element of uniform thickness is subjected to
pure shear there will be a displacement of each side of the element relative
to the opposite side. Tho shearing strain is obtained by dividing this
displacement by the distance betwsen the sides of the element. It should be
noted that shearing strain is obtained by dividing a displacement by a
distance at right angles to the displacoment whereas axial strain is
obtained by dividing the deformation by = length measured in the same
direction as the deformation.
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GENERAL

1.33 TENSILE PROFERTIES

1.330 General. When e specimen of a certain material is tested in temsion, it
is customary to plot the results of such a test as a "stress-strain diagram”.
This diagram forms the basis for most strengih specifications and should be
thoroughly understood and frequently applied by all engineers. Typical
tensile diagrams, not to scale, are shown in Fig. 1-1, Page 1-12. It should
be noted that the strain seale is non-dimensional, while the stress scale is
in pounds per square inch. The important physical propertiss which can be
shown on the stress-strain disgram are discussed in the following sections.

1.331 Modulus of Elasticity (E). Referring to Fig. l-la (for materisls such as
plein low carbon steel), it will be moted that the first part of the
diagram is substantially e straight line. This indieates & constant ratio
betweon stress and strain over that range. The numerical wvalue of the
ratio is called the MODULUS OF ELASTICITY, denoted by "E". It will be
noted that B is the slope of the straight portion of the stress-strain
diasgram and is determined by dividing the stress (in pounds per square
inoh) by the strain (which is non-dimensienal) (See Eq. 1:12, See. 1.23).
Therefore, "EM has the Same dimension as a stress; in this cass pounds per
square inch. A useful congeption of E is "the stress at which the member
would have elongated a distance equal to its original length (assumlng no
departure from the.straight portion of the stress-strain dlagram) This

_can be easily understood from Eq. 1:12,(Sec. 1.23) by considering that e L
in Eq. 1:11, making the strain "e" equal to 1.0,

Other moduli that are often of interest are the tangent modulus Ei, and
the secant modulus E . The tangent modulus is the slope of the stress-

strain diagram st a point corresponding to a given stress while the secant
modulus is the slope of a line drawn through the same point end the origin.

Alelad aluminum alloys have two separate modulus values, as indicated in
the typical curve presented in Fig. 1-le. The initial medulus is the

same a3 for the other aluminum alloys, and holds only up to the propor-
tiopal limit of the relatively soft Alclad covering. Immediately above
this point there is a short transition range and the material then
exhibits a secondary modulus up to the proportional limit of the stronger
core material. This secondary modulus is the slope of the second straight
line portion of the dilagram. Both values of the modulus are based on the
gross area of the piece, core plus covering.

1.332 - Tensile Proportiomal Limit (Fty). Since it is practically impossible to
determine the stress at which the stress-strain diasgram begins to depart
from e straight line, 1t is customary to assign o small valus of permanent
gtrain for this purpose. In this handbook the 1limit of proporticnality
will be taken as the stress at which the stress-strain diagram departs from
8 straight line by a strain of 0,0001, This property or characteristic of
a material gives an indication of the type of stress-sirain diagram which
"applies in the working range. It also indiecates the stress beyond which
the standard value of E cannct be acourately applied. This is of special
interest in the analysis of redundant structures.
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GENERAL

Tensile Yield Stress (Fy ). The stress-strain disgrams for plain low
oarbon steels show & shaTp break at o stress considerably below the
ultimate tensile stress. At this erifical sbress the material elongates
considerably with little or no increase in stress (See Fig. l-la). The
stress at which this takes place is referred to as the yield point. Non~
ferrous metals, high carbon steels, alloy steels, and cold worked steels
do not show this sharp break but yleld more gradually so that there 1is

no definite yield voint. This condition iz illustrated irn Fig. 1-1b.
Since permanent deformations of any apprecimble smount are undesirabls in
most structures, it is customary to adopbt an arbitrary smount of permansnt
strain that is considered admissable for gsneral purposes. The wvalue of
this strain has been established by material testing engineers as 0.00Z,
and the corresponding stress 1s esalled the yield stress. For practieal
purposes this may be determined from the stress-sbtrein diagram by drawing

a line parallel to the straight or elastis portion of the curve through =
point representing zero stress and 0.002 strain., (See Fige. 1-1}. The
yield stress is taken as the intersection of this straight line with the
sbress-strain curve: Cbviously the yield stress so debermined will coine-
cide with the yleld polnt whon the latter is well defined, as shown in

Ultimate Tenslle Stress (Fgy), Figure 1-1 shows how the ultimate tensile
stress is determined from the stress-strain diagram. It ls simply the
stress at the maximum load reached in the test. It should be noted that
all stresses are based on the originml orocss-sectional area of the test
speaimen, without regard to the lateral contraction of the specimen which
actually occurs during the test. The ultimate tensile stress is commonly
used as a criterion of the strength of the material, but it should be
borne in mind that most modern aireraft structures have relatively few
members which are eriticel in tension; consequently, other strength
properties may often be more important.

General. The results -of compression tests oan be plotted as stress-strain

disgrams similar to those shown in Fig. 1-1 for tension. The preceding
remarks (with the exception of those pertaining to ultimate stress)
conecerning the speoiflc tensile propertisas of the matsrial apply in a
similar marner to the compressive properties. It should be noted that the
moduli of elastioity in tension and ¢ompression are approximutely equal
for most of the commonly used structural mmteriala. Special considerations

~ concerning the ultimate compressive stress are taken up in the following

1.333

Fig. 1-la. -
1.334
1l.34  COMPRESSIVE PROPERTIES.
1.340

section.
1.341

Ultimate Compressive Stress (F.,). It is difficult to discuss this property-
without reference tTo column actlion. Almost any plece of materisl, unless
very short tends to buckle laterally as & column under compressive loadings,
and the load at failure usually depends on the relation of the length of

.the piece to its cross-seotional dimensions. Column failure cannot occur,

however, when m piece is very short in comparison with its oross-zectional
dimensions, or when it i1s restrained laterally by external means. Under
these conditions scme materisls such as stone, wood, and a few metals will
fail by fracture, thus giving a definite value for the ultimate compressive
stress. Most metals, however, are so dustile that no fracture is encoun-

tered in compression. Instead of fracturing, the material yields and
1-13
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swells oub, so that the inereasing areas continues bo support the
inoreasing load. It is almost impossible to select s value for the
ultimate compressive stress of such materials without having soms
arbitrary criterion. For wrought metals it is common practice to
assume that the ulfimate compressive stress is equal vo the ultimate
tensile stress. For some cast metals which are relatively weak in °
tension, an ultimate compressive stress higher than the ultimate
Tensile stress may be cobtained from tests on short compact specimens.
When %ests are made on such specimens having an Iyﬁ approximately equal
to 12, the ultimate stress so0 obtained is called the "block" compressive
stress.

General. The results of torsion tests on round tubes or round solid

sections are sometimss plotted as torsion stress-strain diagrams. The
modulus of alasbicity in shear as determined from such a diagram is a
basic shear property. Other properties, such as the proportional limit
and ultimate shearing stress, cannot be treated as basic properties
becauss of the "form factor" effects which may occur in such a test.

Modulus of Blasticity in Shear (G). This property is the ratio of the

shearing stress to the shearing strain at low loads, or simply the
initial slope of the stress-strain diagram for shear. It is slso called
the modulus of rigidity. The relation between this property, Poisson's
ratio, and the modulus of elasticity in tension,. is expressed for homo-
geneous materials by the following equation: '

D R R (1:34)
Proportional Limit in Sheer (Fg,). This property is of particular

Interest iIn connection with Iormules which are based on considerations
of perfect elasticity, as it represents the limiting velue of shearing

_ stress to which these formulas can be mccurately applied. As previously

noted, this property cannot be determined directly from torsion tests.
The results of research at the National Bureau of Standards show that
the ratio of the proportional limit in shear to the propeortional limit
in tension can be assumed to be approximately 0.55 for the commonly used

1,35 SHEAR PROPERTIES
1.350
1.3561
2il+}ﬂ
1,352
structural materials.
1.353

Yield and Ultimate Stresses in Shear. These properties, as usually

obtained from torsion tests, are not strictly basic properties as they
will depend on the shape of the test specimen. In such cases they should
be treated as modull and should be used only with specimens which are ~
geometrically similar to those from which the test results were cbtained.
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TYPES OF FATLURES

In the following discussion the term "failure" wilr usually denote
actual rupture of the member, or the condition of the member when it
has just atteined its maximum load.

General. Fracture of a material may ocour by either a ssparation of

adjacent particles across a section perpendicular to the dirsction of
loading, or by a sliding of adjacent particles along other sections. In
some cases the mechanism of Pailure includes both of these actions, TFor
instanece, in & simple tension test sliding action along inelined sections
may occwr first with a consequent reduction in the eross sectional ares
of the specimen. This mey result in strain hardening of the material so
that the resistance to sliding is increased, and the final failure may
occur by separation of the material secross a section perpendicular to the

Direct Tension.or Compressions This type of fallure is assoceisted with

the ultimate tensile or compressive stress of the material. For cdmpression
it can apply only té members having  large cross-sectional dimensions as
compared to bthe length in the direction of the lo#d. See also Sec. 1.341.

1.4
1.40 GENERAL
1441 MATERTAL FAILURES
1.410
direction of the loading.
1.411
1.412

Shear. Pure shear failurss are usually obtained only when the shear load

is transmitted over a very short length of the member. This condition is
approached in the case of rivets and bolts. In cases where the ultimate
shear stress is relatively low = pure shear failure may result, but in
general a member subjected to a shear load fails under the action of the
resulting normal stresses (Eq. 1:10), usually the compressive streases.
The failure of s tube in torsion, for instance, is not usually caused by
exceeding the allowebls shear stress, but by exceeding a certain allowable
normal compressive stress.which causes the tube to buckle. I% is cust-
omary, for convenience, to determine the allowable stresses for members
subjected to shear in the form of shear stresses. Such sllowable shear
stresses are therefors an indirect measure of the strosses actually
causing feilurae.

1.413 Bearing. The failure of & material in bearing may consist of crushing,

splitting, or progressive rapid yielding in the region where the load is
applied. Failure of this type will depend, to a large extent, on the
relative size and shape of the two commecting parts. The allowable bearing
stress will not always be applicsble to cases in which one of the
contacting members is relatively thin. It is also necessary, for
practical reasons, to limit the worklng bearing stress to low values in
Such cases as joints subjected to reversals of lond or in bearings between
moveble surfaces. These special cases are covered by specifis rulings of
the procuring or licensing agencies, involving the use of higher faetors

of safety in most cases.
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Bending. For compact sections not subject to instability, a bending
failure can be classed as a tensile or compressive failure caused by
exceeding s certain allowable stress in some portion of the specimen.
It is customary to determine, experimentally, the "modulus of rupture
in bending", which is u stress derived from test results through the
use of Eq. 1:3, (Sec. 1.21) in which case M is the value of bending
moment which caused failure. If not determined experimentally, the
value of the modulus of rupture in bending may be assumed equal to the
ultimate tensile stress when instability is not eritical. Since it is
well known that Eq. 1:3 is based on asswnpbions which are not alwanys
fulfilled at failure, the modulus of Pailure canmot be considered as
the actual stress at the point of rupture. This should be borne in
mind in dealing with cambined ttresses, such as bending and compression,
or banding and torsion.

Failure from Combined Stresses. In cambined stress conditions where

failure is not due to buckling or instability it is necessary to refer
to some theory of failure. The "maximum shear® theory has received wide
acceptance as a simple working basis in the case of ductile materials,
(Ref. 1), It should be noted that this theory interprets failure as the
first yielding of the material, so that any extension of the thestry to
covor conditions of final rupturs must be based on the experience of the
designer. The failure of brittle materials under combined stresses can
generally be treated by the "maximum stress" theory.

Failure dus to Stress Conecentration and Fatigue. The compoment parts

of the airplane structure are subjected %o loading conditions and intermal
stresses of a highly verisble character. It is well known that the
strength of e material umder such conditions is less than that which
would be obtalned under steady loadings. This phenomenon of the decressed
strength of a material under repoated stresses is commonly ealled fatigue.,
For engineering purposes a measure of the basie fatigue characteristics of
& material is o¢ften cbtained by an endurance test. In this handbook the
ondurance limit in bending will be taken as the meximum alternating bending
stress that a polished specimen of the material esn withstand for a
specified number of eycles, as measured in the "rotating beam" typs of
endurance test. In a similar manner the endurance limit in torsion will
be taken as the maximum alternating stress which the material can with-
stand for a specifisd number of cyeles. Although the absolute values of
these endurance limits do not have much direct application in design they
are useful as a relative indication of the fatigue characteristics of the
varlous materials of construction.

Rapid changes in the cross section of a structural member will cause local
stress concentrations in which the maximum stresses may be greatly in -
excess of the average siress. These concentrations do rat appreciably
affect the strength of ductile materials under steady loads because of the
equalization of stresses which takes place after the materisl begins t.
yield. Under varisble stresses, however, sush concentrations may cause
loeal stresses in excess of the endurance limit and thus decrease the
ultimate strength of the member. Other fmctors of major importsnce in this
connectlon are the average stress and the range of the stress variation.
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General, Practically 211 structural members such as beems and columns .

particularly those made from thin material, arse subject to fallurs through

instability. In general, instability can be olassed as: (1) primary, or
(2) local. For example, the failure of & tube under comprossion may occur
either through lateral deflection of the tube as a golumn (primary instab-
ility), or by collapse of the tube wall at a stress lower than that re-
quired to produce a general colum failure. 8imilerly, an I-beam may fall
by a general sidewise deflection of the compression flange, or by local
wrinkling of thin outstanding flanges. It is obriously necessary to
consider both types of failures unless it is mpparent that the eritiocal
load for one type is definitely less than that for the other type.

Instebility failures may ocour in either the elastic range (below the
proportional limit) or in the plastic range (above the proportional limit),
To dietinguish between these two types of action it is not uncommon to
refer to them as elastic instebility failures and plastic instability
failures, regpectively. It is important to note that instability failures
are not usually associated with the ultimate stresses of the material.
This should be borne in mind when correcting test results for material
variations, It also has a bearing on the choice of a material for a given
type of construction as the "strength-weight ratio" will be determined
from different phjsical characteristics when this type of fmilure can be
expected. For materials which have a very small spread bebween the pro-
portional limit and the yield stress,the plastic instability type of
failure occurs in such e narrow rangs that it is not of much importance,
but in materials which have a considerable spread between these two
properties, the plastic instability type of failure may be equally as

In studying eny structural member it is important to avoid confusion
between the different types of failure, particularly where instability is
expected to be important. In general, most mswbers should be investigated
first from the standpoini of failures of material. They should then be
checked separately for their resistance to primary instability failure.

" Merbers which are suspected of being weak in resisting local instability

should also be checked for this third possible type of failure. Whichever
type of failure gives the lowest strength should be used ns the criterion

Instebility Failures under Compressive Loadings. Failures of this type
are discussed in Sec. 1.5 {Columns) and ir Sec. 1.8 (Thin-Walled Sections).

Bending Instability Failures. Failures of round tubes of ususl sizes when
subjected to bending are usually of the plastic instability type. In such
cases the criterion of strength is the modulus of rupture as derived from
test results through the use of Eq. 1:3 (Sec. 1.21). Elasbic instability
fzilures of thin-walled tubes having high D/t retios are treated in later

1.42  INSTABILITY FAILURES

1.420
important as the elastic type.
in design.

1.421

1.422
sectione.

1.423

Torsional Instability Failures. The remarks of the preceding section apply

ir a similar manner to round fubes under torsional loading. In such cases

fhe modulus of rupture in torsion is derived through the use of Eq. 1:6
Secs 1-21) .
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Failure under Cambined Leadings. For combined loading conditions in which

failure is caused by buekling or instability, no general theory exists which
will apply in all cases. It is convenient, however, to represent such
conditions by the use of "stress ratios", which can be considered as mnon—
dimensional ecoefficients demoting the fraction of the mllowable stress or
strength which is utilized or which can be developed under special conditions.
For simple stresses the stress ratio can be expressed as

where f = applied stress
F » allowable stress

Note that the "margin of safety" as usurlly expressed,
ls given by the squation:

Considering the case of combined loadings, the general conditions for.
failure can be expressed by equations of the following type:

x ¥ 4 e T oo o e e e o .
Ry +R) + Ry + - = - - = 1.0 (1:37)

In this equatlon Ry, R, and Ry may denote, for instance, the stress ratios
for compression, bending, and shear, and the exponents x, y and z define

the general relstionship of thé quantities. This equation may be inter-
preted as indicating that failure will ceour only when the sum of the

stress ratios is equal to or greater than onme. An advantage of this methed
is that the formula yields correst results when only one loading condition
is present. Consequently it tends to give good results when any one loading
oondition predominates. It also permits test data to be plotted in non-
dimensional form, which.is a decided advantage.

In many cases it iz convenlent to deal directly with "load ratios" rather
than stress ratios. The ‘load ratio is simply the ratioc of the applied
load to the allowable load and is equal to the corregponding stress ratio.

- Considering enly two loading conditions, such as bending and torsionm,

Eq. 1:37 can be plotted as a single Interaction curve of R, aghinst R, .
Likewise, in the case of combined bending and compression, Ry oan be
plotted ageinst R,, Whern all three conditions exist, the equation
represents an iateraction surface, which ocan be plotted as a family of
curves. TIypical ocurves corresponding to various exponents are shown in
Figure 1-2, Page 1-18. The gensral significance of Eq. 1:37 and Fig. 1-2
is that the mddition of & second loading condition will lower the percent-
age of the allowable stress which may be utilized in the original loading
condition. If the exponents approsch infinity, the ocurve of Fig. 1-2 will
approach the lines Ry = 1.0 and By = 1.0, indicating that the two loading
conditions have no effeat on each otner.
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When only two stress-ratios are imvalved and when the two different
applied stresses remain in constant proportion, the margin of safety
of the member may be detemmined from Fig, 12 by the following method:

(1) Locate the point on the chart representing the applied
values of R] amd Rp computed from the applied stresses.
(Ilustrated as point (1) on Fig. 1-2).

(2) Draw a straight line through this point and the origin
(shomwn as a diagonal dotted line on Fig. 1-R).

(3} Extend this line to intersect the proper stress-ratio
curve (corresponding to the condition under consideration)
at point (2).

{(4) Read the allowable values Ry, and asg the ordinate and
abscissa, respectively, of poinmt (2

(5) The factor of utilization or strength ratio is obtained
as the ratio of the applied to the allowable value of either
stresd ratio as follows;

v . R _ .- (1.38)
Ra Ra '

(6) The true margin of safety then can be comprbed from the
following equation:

MSe Tl — = m mm o e (1.39)

Note that when the following stress ratio expressions are used, the
marging of safety can be computed as indicated

For By + Rg =1,
N SN
M.S. 7o 1

For Rp® + Rp® =1

M'S'=\/&?_1_ﬁ27 -1

Other M,S. formulas can, of course, be determined for the more compli~
catel stress ratio expressions,

The practical application of Eq. 1:37 will be taken up in the following
chapters.
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COLUMNS

A theorstical treatmsnt of columns can be found in standard text books
on the strength of materials. The problems confronting the designer

ineclude, however, many polnts which are not well defined by theery and
which frequently canse some confusion. These will be taken up in this
section. Actual strengths of columas of various types are given in '

General. A column may fail through primary instebility by bending later-
ally or by twisting about some axis parallel to its own axis. This latter
type of primary failure is particularly common to columns having unsymmete
rical open sections. The twisting failure of a closed section column is
precluded by its inherently high torsionmal rigidity. Since the available
informaetion on twisting instability is somewhat limited it is advisable to
conduct tests on all columns subject to this typs of failure. A theoretical
treatmont of primary failure through twisting instability may be found in

Long Columnse The Buler formuls for long columms which fail by latersl
ending is given by Eq. 1:22, Sec. 1.27. No explanation &f this classioal
formuls need be offered, as its derivation can be found in many standard
toxt books on the strength of materials. The value to be used for the
restralnt coeffliclent, ¢, depends on the degree of end fixation. Definite
rules as to the maximum value which may be assumed are given in the
specific airworthiness requirements of the Govermnment services. The true
significance of the restraint coefficient is best understood by considering
the end restraint as medifying the effective column length, as indicated
in BEq. 2:22, Secs 1.27. TFor & pin-ended column having zero end restraint
¢ = 1.0and L' = 1, A fixity roefficient of 2 corresponds to a reduction
of the effective length o 1/AFZ or .707 times the total lengbth.

1.5
1.50 GENERAL
subsequent chapters.
1.51  PRIMARY INSTABILITY FAILURE
1.510
Reference 2.
1.611
1.512

Short Colums. If the length of a column is reduced below & certain ceritical
value, primary bending failure will occur at lcads below those predicted by
the Euler formula. This is dus to a reduction in the effective value of E
which is ceused by changes in the slope of the siress-strain diagram and by
unavoidable eccentricities. In this region the test results show more
scatter than in the Euler range and it is customary to adopt an empirical

or semi-empirical formuls for predicting the allowsble column stress. When
e definite eccentricity éxists, the critical column loads are reduced due

to the combined effects of axial load and bending. Special formulas for

such cases can be found in stendard text books and handbooks.

Although many types of formulas have been devised to cover the shorte
colimn range, it has been customary, in aireraft work, to use the Johnson
formula for round steel tubes and the straight line formula for round
aluminum alloy tubes. Recent tests at the National Bureau of Standards
have shown, however, that the Johnson formuls does not have the correct
shape for round tubes of normalized X-4130 steel.
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A modified parsbola having an exponent 1.5 (Eq. 1:25, Sec. 1.27) gives
a satisfactory representation of the Bureau of Standards test data on
round tubes of this material and it has therefore bsen adopted for
this handbooke The Johnson formuie (Eg. 1:24, Sec. 1.27) will be used
for solid wood struts, round 1025 steel tubes and round heat-treated
alloy steel tubes. The straight line formula (Bq. 1:26, Sec. 1.27) "
will be used for round aluminum alloy tubes.

It will be noted that the ebove column formulas are of the general form
given by Eq. 1:23, Sece. 1.27. For example, the straight line formula is
a special case of Eq. 1:23 in which the exponent n is equal to 1.0. "Ina
similar mannsr the Jonnson formula can be obtained from Eg. 1:23 by
setting n equal to 2.0. The above eguations strictly apply only to round
tube sections as they were derivea from tests on such sections. In many
cases, however, they will be found %o be satisfactory for sections of
other shapes when local instability 1s not eritieal.

Short column feilure can elso be expressed by the modified Euler formula
in which the elastic modulus is replaced by an effective moculus, E', as
in the following equation:

E!? '
= Py o = o e m oM e = em m mm o = e m S A w 1=40
FD . EL17P)2 ‘ ( )

Although this ‘equation doss not have much practical importance in
determining the short column ourve, it is of particular interest in
connection with the deberminstion of ihe effective modulus which can be
used to compute local instability stresses. The value of the effective
modulus at any given compressive stress, F,, can be determined by solving
Bq. 1:40 for E', after substituting ¥, and the corresponding L'/p as
cbtaired from the basic colum curve for primary failure.

Column Yield Stress (F,,). The upper limit of the allowable column stress

for primary failure is called the columm yield stress and will be designated
F o+ It can be determined by extending the "short-column® curve to a point
sorresponding to zero length, ignoring any tendency of the curve to rise
rapidly or "pick-up" for very short lengths. The short-column curve used
in determining F,, sShould be cbtained from tests on specimens having geo-
metrical proportions such that local failure is precluded except for very
low values of L’/p .

When the column yield stress is reached, the walls of the column will tend
to buckle unless restrained by extreme shortness, or by the application of
leteral restraining.forces. In some cases, however, if the specimen has
not been allowed to buckle, the s%ress may bs increased considerably above
this value. Due to the danger of buckling when the column yleld stress is
approached, the latter should be considered as the limiting stress for'all
columns .

The column yield stress is mainly determined by the nature of the compress-
jive stress-strain diegram of the material. When the materiml has a definite
yvield point in compression, this value may be assumed for the column yield
stress. Pew aircraft materials, however, have a sharply defined yield point.

In such c¢cases it is usually possible to determine the column yield stress

1«22
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GENERAL

as a function of eitner the tensile or compressive yield stress. .For
example, F,, for normalized X-4130 round tubes is approximately equal
to 1.06 times the tensile yield stress. The column yield stress for
othor materials is given in later sections.

NON~DIMENSIONAT COLUMN CURVES FOR PRIMARY FAILURE

1.520

1.521

1053

Gonereles On account of the many factors involved it is often difficult

to predict tne effects of possible material variations on the strength

of columns as obtained by tests. When the column railure 1s aet'initely
of the primary bending type it is advissble to plot the test results with
non-dimensional coefficilents, such as are employea 1n Rererence 5. The
following coeffieients will be adopted for this purpose:

It

E

" allowable stress ratio

wherea F, = allowasble column stress.
Fiq = colum yield stress.

B = slenderness ratio factor
=L/p

Fco . _

= 1/Ve (See Bq. 1:22 Sec. 1.27).

The slendermess ratio factor can be considered as the ratio between thea
offective slenderness ratio (L'/p) and the (L'/p) at which the Euler
stress for a pin-ended column would equal F,,. Thus, when B - 2, the H
Euler stress Fg, would equal 1/4 Feo, or Ry would be .25 (siree the -
Euler stress varies inversely as the square of L'/p).

r

Typieal Column Curves. Typical column curves plotted in terms of these

non-dimensional coefficients are illustrated in Fig. 1-3, Page 1-24.

Tt will be noted that the Johnson parabolie curve is tangent to the Euler
curve at & value of R = .5; that is, the Euler formula will mot apply
when it gives stresses higher tharn half the column yield stress. It is
also convenient to lmow that the stresses given by the 1.5 parabolic
formula and the straight line formula are squal to those given by the
Euler formula et valuss of Ry equal to 4286 and .333 respectively.

LOCAL INSTABILITY FATLURE

1.530

General, Columns may fail by & local collapse of the wall at a stress

below the primary failure stress. The general egquation for the local

failure of round tubes is given in the following section. The local

failure of colimns having cross sections other than those of round tubes
is discussed in Sec. l.54.
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GENERAL

Crushing or Crippling Stress (Fp,). The upper limit of the allowable
colunn stress for local failure is called the crushing or crippling stress
and is desigmated Fn,. The crushing stresses of round tubes subject o
plastic fajlure generally can be expressed by a medified form of the
equation for the tuekling of a thin.walled cylinder in compression (see

The effective medulus E' can be determined from the basic column curve for
primary failure by the method given in See, 1.512, As the value of the
effective modulus carresponds to 2 given value of stress it uswally is
convenient to: (1) assume a value of Foe; (2) compute the corresponding
value of E'; (3) substitute these values into Hg. 1:43 and solve for D/t.
This latter value is the D/t at which crushing will occur at the assumed
stress., Values of the constant K must be determined empirically. As
noted above, Bg. 1:43 applies to plastic fajlure; i.e., for stresses above
the proportional limit. In the case of thin-walled tubes whiech fail
locally at stresses below the proportional limit, the initial eccentricities
are likely to be larger relatively and the cmstant should be suitably

Gengral. In the case of colums having unconventiomal cross sections
which are particularly subjeet to local instability, it is necessary to
establish the curve of transition from local to primery failure. In
determining the strength curves for such columms, sufficient tests should

Nature of "Short Colum" Curve, The test specimens should cover a range
of L'/p which will extend to the Euler range, or at least well beyond the
values to be used in construction. ¥When columms are to be attached
eccentrically in the structure, some tests shauld be made to determine the
effects of eccentricity. This is impartant particularly in the case of
open sections, as the allowable loads may be affected considerably by the

Local Failure. When local failure occurs, the crushing or crippling stress
Fee can be determined by extending the "shart column' curve for the specific
cross section under consideration to a point corresponding to zero L'/p.
When a 8mily of columns- of the same general cross section is uwsed, it is

often poasible to determine a relationship between Fo, and some factor -

depending on the wall thickness, width, diameter, or some combination of
these dimmnsions. Extrapclations of such data should be avoided by cover-

Reduction of Test Results on Aluminum Alloys to Standard, Although there
is no completely rational methad for correcting the results of compression

1.531

Sec. 1.630) as given below:

D/t

reduced.,
1,54 __ COLUMNS OF UNCONVENTTONAL CROSS SECTION
1,540

be made to cover the following peints:
1,541

location of the point of application of the column load,
1.542

ing an adequate range in the tests.
1.543
REVISED
oCT 40

tests to standard, the use of the correction factars given in Fig. 1-4 is
considered satisfactory and is acceptable to the Army, Navy, and the Civil
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GENERAL

Aeronantics Administration, for use in commection with tests on
alumimm alloys, (Note that an altermative method, acceptable %o the
Civil Aeronautics Administration only, is given in paragraph 1.344),
In using Fig. 14, the correction of the test result to standard is
made by simply muliiplying the stress developed in the test by the
factor K. This factor may be considered applicable regardless of the
type of failure involved (i,e,, column, crushing, or twisting).

Far obtaining compressive yield strengths for use in Fig, 1-4, the
methods that showld be used are:

a, Direct compressive stress-strain messurements of the specimen,

bs In case a compression member is formed from sheet material,
and the use of method (a) is not feasitle, direct tensile
stress—strain measurements should be taken on the original

- sheet in a direction normal to the length of the compression
member. The cross and with-grain yield ratios given in
Table I-1 then should be used to compute the compressive
yvield along the length of the compression member, In case
the compression member is mnufactured indisceriminately with
respect to material grain, the test specimen shauld be mde
with the grain parallel to its length.

c. In case neither methods (a) nor (b) are feasible or applicatle,
it should be assumed that the compressive yield of the speci-
men is 15 percemt greater than the minimm estabilished yield
for the mterial,

TAELE -1

RELATTONSHIP BETWEERN WITH AND CROSS GRATN FROPERTIES OF ALUMINUM ALLOY

. SHEET
For 1757, 2457, For 245RT and
Property Alelad 178T, and Alclad 245RT
Alelad 245T.
Tensile strength (w) | = 1,02 Tensile Str. (x) = 1,02 Tensile Str.(x)
Tensile yield (w) | = 1.17 Tensile yield {x)} | = 1,14 Tensile yield(x)
Compressive yield(w) | = 0.96 Tensile yield (x) | = 0.96 Tensile yield(x)
Compressive yield(x) | = 1.08 Tensile yleld (x) | = 1.06 Tensile yield(x)

w = with grain, x = cross grain
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